A. PERSAMAAN UMUM GARIS, GRADIEN, DAN SUDUT INKLINASI
[1.] PERSAMAAN UMUM GARIS
Garis dibentuk oleh paling sedikit dua buah titik berbeda. Sebagai suatu himpunan, garis merupakan himpunan titik-titik yang tak hingga dan tak berbatas sehingga garis tidak memiliki dimensi panjang. Jika garis dibentuk oleh titik A dan B maka garis tersebut dapat dinamakan sebagai garis AB. Notasi lain untuk penamaan garis yaitu menggunakan huruf kecil misalnya g, h, l, m dan sebagainya. Sebuah garis disebut kurva berderajat satu yang dinyatakan sebagai:
Ax + By + C = 0 untuk A, B, C bilangan riil dan x, y variabel
bilangan riil
Sebuah garis dapat ditentukan persamaan kurva berderajat satu seperti di atas apabila diketahui tiga buah titik yang dilalui oleh garis tersebut.
Terdapat dua persamaan garis lurus:
1.) Jika diketahui gradien garis dan sebuah titik yang dilalui garis
tersebut maka persamaan garis dapat ditentukan dengan cara mensubtitusikan
nilai gradien dan koordinat titik ke dalam persamaan garis bergradien m yaitu y
= mx + c. Misalkan garis memiliki gradien m dan melalui titik (x0, y0)
maka diperoleh persamaan : y0 = m(x0) + c selanjutnya
dapat diselesaikan dengan tahapan berikut:
Persamaan yang diperoleh dinamakan persamaan garis
bergradien m dan melalui sebuah titik (x0, y0). Untuk dapat menggambarkan garis maka perlu
ditentukan sudut inklinasi garis tersebut dengan menggunakan rumus α = arc tan m.
2.) Mengidentifikasi masalah :
Misalkan sebuah garis y = mx + c dilalui titik (x1,
y1) dan (x2, y2) maka persamaan garis nya:
[2.] GRADIEN
Kemiringan suatu garis dinamakan gradien (slope of the line) dan
dinyatakan oleh notasi m. Nilai gradien suatu garis dapat bernilai positif,
negatif, nol atau tidak terdefinisi. Gradien suatu garis dapat ditentukan
dengan menggunakan konsep trigonometri pada segitiga siku-siku namun dengan
memperhatikan interval nilai sudut yang dibentuk oleh garis terhadap sumbu x
positif.
Perhatikan Gambar!
Perhatikan Gambar!
Gambar 1. Kemiringan Garis
Garis tersebut melalui dua titik yaitu P1(x1,
y1) dan P2(x2, y2). Sudut yang
dibentuk garis P1P2 adalah α. Pada gambar terlihat sebuah
segitiga sikusiku dengan hipotenusa P1P2, panjang sisi alas x2
- x1 dan panjang sisi tegak y2 - y1. Nilai
tangent sudut α dapat ditentukan sebagai perbandingan antara panjang sisi tegak
terhadap panjang sisi alas segitiga siku-siku. Sehingga dapat dirumuskan,
[3.] SUDUT INKLINASI
Diketahui bahwa nilai gradien
suatu garis merupakan nilai tangen sudut inklinasi dan besarnya sudut inklanasi
adalah nilai arc tan dari gradien garis.
dimana,
Hubungan antara nilai gradien dan sudut inklinasi
adalah nilai gradien pada suatu garis merupakan nilai tangent sudut inklinasi dan besarnya sudut inklinasi adalah nilai arc tan dari gradient garis. Bentuk dari persamaan kurva berderajat satu dapat diubah menjadi fungsi dari x dimana x adalah variable bebas dan y adalah variable terikat yaitu sebagai berikut :
Konstanta m disebut sebagai gradien yang menunjukkan kemiringan garis dan c merupakan konstanta persamaan. Persamaan y = mx + c disebut persamaan garis bergradien m.
Sudut inklinasi
garis (angle of inclination) adalah
sudut bernilai positif yang dibentuk antara garis dan sumbu x positif dan biasanya
dinotasikan oleh sudut alpha (α).
Perhatikan Gambar!
Gambar 2. Sudut Inklinasi (pada x positif)
dimana,
Gambar 3. Sudut Inklinasi (pada x negatif)
dimana,
Hubungan antara nilai gradien dan sudut inklinasi
adalah nilai gradien pada suatu garis merupakan nilai tangent sudut inklinasi dan besarnya sudut inklinasi adalah nilai arc tan dari gradient garis. Bentuk dari persamaan kurva berderajat satu dapat diubah menjadi fungsi dari x dimana x adalah variable bebas dan y adalah variable terikat yaitu sebagai berikut :
Konstanta m disebut sebagai gradien yang menunjukkan kemiringan garis dan c merupakan konstanta persamaan. Persamaan y = mx + c disebut persamaan garis bergradien m.
Sifat-Sifat
Garis Dalam Bidang : Kesejajaran dan Perpotongan
Sifat-sifat garis yang berada dalam
sebuah bidang dalam geometri Euclide meliputi garis-garis yang berpotongan atau
tidak berpotongan. Dua buah garis dikatakan berpotongan jika ada sebuah titik
potong yang dilalui kedua garis. Dua garis tidak saling berpotongan disebut
garis sejajar. Perhatikan bentuk garis-garis pada gambar dibawah ini.
Gambar di atas memperlihatkan bahwa
garis-garis bergradien positif atau negatif memotong sumbu x dan sumbu y
masing-masing di satu titik. Perpotongan garis tersebut dengan sumbu x
ditentukan dengan mensubstitusikan nilai y = 0 ke dalam persamaan garis.
Perpotongan garis tersebut dengan sumbu y ditentukan dengan cara mensubstitusikan
nilai x=0 ke dalam persamaangaris. Sedangkan garis sejajar sumbu x hanya
memotong sumbu y dan tidak memotong sumbu x. Garis sejajar sumbu y hanya
memotong sumbu x dan tidak memotong sumbu y. Tabel berikut meringkas hubungan
persamaan garis dan titik-titik potong garis terhadap sumbu x dan sumbu y.
Persamaan-persamaan garis:
Sumber
:
Catatan
Kuliah , Modul
Belajar
Sukirman,
1994, Geometri Analitik Bidang Dan Ruang, Jakarta : Universitas Terbuka.
0 komentar:
Posting Komentar